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1 Introduction

Silage is an applicative behavioural specification language especially suited for PSP
applications. It originated at Berkeley [Il, but the versions being considered in this do,
urnent come from Philips (Eindhoven) [3] and IMEC [2]. There are significant differences
between the Philips and IMEC versions. Both versions of Silage are used as input lan-
guages to suites of silicon compilers.

A study of the translation of Silage circuits to ELLATM is carried out. Sections
3 - 10 consider constructs of Silage common to both Philips and IMLC's Silage whilst
section 11 considers those constructs only available in the IMEC version. The document
outlines a series of ELLA macro functions which could be combined into a library for use
in the tra,,ltion of Silage circuits. It should be noted that although a Silage to ELLA
translation is possible the resulting ELLA circuit is not necessarily the one that would
have been chosen if the circuit had been originally described in ELLA. This work has been
supported by the ESPRIT project 'SPRITE', which is developing a European Synthesis
System with ELLA as one of its front-end hardware design languages.

2 ELLA

The ELLA sy~te, is an integrated hardware design tool-set, which comprises the ELLA
language compiler, the ELLA Applications Support Environment (EASE), the ELLA sim-
ulator, and the ELLANET procedural interface [4-7]. The ELLA language can be used
'o describe hardware at all stages in the VLSI design cycle, from the earliest architec-
tural concepts to the full implementation at gate level. The ELLA system was originally
developed at the Royal Signals and Radar Establishnent in Malvern, UK. and is now
being enhanced in collaboration with Praxis Electronic Design of Bath. ELLA is now the
de.facto standard high-level VLSI design language in the UN. The language constructs
described in this document are available in ELLA Version 4.

3 Silage Signals

Every Silage program has associated with it a functional behaviour where signals denote
infinite streams of samples. Each signal has a basic type in the same way that ELLA gives
types to values, and this type must be explicitly known. Silage programs relate signals
through a series of relations with other signals. The semantics of Silage can be thought

of as data-flow [1], where a program represents a set of paths through which data flows.
rather than a sequence of operations performed on memory locations i.e. control-flow.
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where w and d are integers. In IMEC Silage these are called FIX<w,d> and INT< w-
respectively, and INT< 1 > is given the special name EQOL'. If a signal is of type
NUM<w.d> then it represents a fixed point number in 2's complement notation of length
w, with the last d bits taken to represent those values after the decimal point and the most
significant bit being the sign bit. In ELLA there are several ways in which such signal
types could be described, only four possible formats will be considered here. Two formats
involve the use of ELLA integers, first

TYPE eight = e/(2r0000000 .. 2r11111111),

four = f/(2r000 .. 2r1111),

inum_12_4 = (eight, four).

with a constant of type 'inum-12_4' defined by

C0NST c-i = (e/2rCO000000, f/2r110).

and second

TYPE first - /(-128 .. 128),
second = s/(O .. 31).

inum = (first, second).

with a constant of type 'inunm' defined by

CONST c-2 = (W/O, s/8).

In both cases the constant represents the decimal value 0.8 expressed as an ELLA type
which is a structure of two ELLA integers. In the case of constant 'cAl' the expression
f/2r1100 is to be taken as representing a fraction and not the integer value '12". For
c-2 it appears that 0.8 is represented exactly, however 0.8 cannot be expressed exactly in
NtTM< 12, 4 > format. Thus with eiher approach great care is needed when operating on
such types. Hence it would be necessary to convert such constants to bit representations
before any calculations could be performed in order for the translated Silage program to
give identical results to the original Silage program. This observation leads to the consid-
eration of using ELLA characters since automatic translation to bit strings is provided by
a series of built-in operators.

Consider

INT v =

TYPE bit = NEW b('O I '1),

num- = STRING [v] bit.
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where 'bit' is a user defined ELLA type which can take the value b'0 or h1, and 'nunvw'
is a row of 'w' bits. In order for 'unw' to represent a type such as NUM . w.d , it is
necessary to adopt the convention that the last d 'bits' represent the fractional part. For
example

NUM<12,4>

could be represented by

num-12 - STRING £123 bit

and the constant 'one' would be defined as

CONST one = b"000000010000".

However if the convention NUM< 12.3 > were to be used then 'one' would stil represent
a valid quantity. but its value would be 2.0.

To avoid misinterpretation of such constants leads to the fourth approach, which is t,
define signal type NUM< 12.4 > in the form

TYPE eight-bit = STRING [81 bit,

four-bit = STRING [4] bit,

numn_12-4 = (eight-bit, four-bit).

In which case 'one' would be defined as

CONST one = (b"00000001", b"0000").

The advantage of this approach is that strong type checking would always ensure that a
constant of type 'num.124' could not have another representation. The advantage with the
other character approach is that it provides a more compact denotation. In this docunent
the last type definition will be used when converting Silage code into ELLA.

5 Arrays

In Silage arrays of signals can have any number of dimensions, however multiple 'm.iies'
of fmctions are not allowed. In ELLA multiple 'makes' are possible plus multi-dimensional
arrays of signals.

Note that Silage arrays start from zero but ELLA arrays start from one. Also the
upper bound of a Silage array is one less than the size e.g. NUM< 12.4 >[61:c is an arraN
of six elements indexed from 0 to 5.

Silage has a shorthand notation for combining array elements, for example if ab~c are
arrays of three elements then

a[] = bE) + c[]

4



is the same as

a[O] - bLO] + c[O]; a [] = b[1] + ci]; aL2] = b[2] * c[2];

or

a = b +c

or

(i: 0,.2):: a[i] = b[i] + cfi]

whereas in ELLA the following is needed

LINT i = 1..3] a[i] :- b[i] + cli]

unless a new macro function -. say, is defined which adds two vectors of arbitrary lecngth.

then it is possible to say

a := b + c

With the inclusion of function, macro parameters in a future release of ELLA it will be

possible to define an even more general macro, for example

MAC OP {FN GENERAL (TYPE ty,ty)->ty} = ([INT n]ty:inl in2) -> [nJt):

LINT i = I .. n3 in [i] GENERAL in2.i]

When this macro is instantiated it is supplied with a function as a macro parameter.

the input type of the f. action macro parameter defining the type of the inputs to the

macro. The length of the vector of inputs is defined implicitly by the input variables. The

advantage of such a general macro is that it can be used in a variety of situations, for

example

a :- b OP{+} c

res :v gatesl OP{AND} gates2

bitres := bitsl OP{BITSMULT} bits2

6 Iterations

Iterations in Silage are of the form

(i : lub .. upb ) :: a = b

where lwb, upb are integers and a, b expressions. Since Silage is an applicative language

it has single assignments thus definitions of the form

(j : 1 ..10 ) :: a = a + 1;

5



are illegal. In such cases arrays should be used i.e.

(i : 1 .. i0) :: a[i] = a[i-l] + 1;

In ELLA such expressions axe of the form

EINT i = 2 .. Ill a[i] := afi-1] + one;
for iterations in an ELLA sequence clause, and

FOR INT i = 2 . 11 JOIN a[i-1] - one -> a[i].

for the functional form, where 'one' is an appropriate ELLA integer.

7 Constants

Constants in Silage are expressed as

(0.8 : NUM<7,6>)

This is a constant 0.8 written in a seven bit format with the last six bits representing the
rmber and the remaining bit being the sign bit. To describe such a constant in ELLA
would require a format like

NTJM{7,6}r"0. 8"

where NUM is an ELLA macro whose specification is

MAC NUM {INT m n} (STRING [INT size] real:in)
-> (STRING [m-n] bit, STRING [n] bit):

where

TYPE real = NEW r( '0..'9 1'. '-

With this macro the value of 'size' is determined from the input value when the macro is
instantiated, so, for example, a string such as r"0.8" would have a 'size' of 3. The macro is
written so that strings of characters of arbitrary length are read in and a bit representation
is output in NUM<m,n> format. ELLA has a set of built-in operators which would assist
in writing the body of the macro, for example the conversion of r"O.8" to a floating point
number. It should be noted that Silage has a default casting rule together with a library
for rounding, saturation etc. [2], and these must be taken into a'count when translating.

In ELLA expressions of the form NUM{7,6}r"O.8" are value delivering and therefore
illegal in certain parts of ELLA i.e. as a test condition in a CASE statement. In such
places the constant will need to be expressed explicitly i.e.

6



(b"O", b"110011")

8 Delay Signals

Silage uses built-in delays of the form

name C int

where the signal 'name' is delayed by 'int' time units with 'int' being a manifest integer
expression, that is it must be known at compile time. This delay returns the value of
'name' at 'int' time units before the present value. In ELLA there exist multiple delays.

but they deliberately lose information for signals shorter than the delay time. The way to
do pure delays is to have

DEL-n} nane

where use is made of the generic delay macro

MAC DEL {INT n} = (TYPE t:in) -> t:

IF n = 0

THEN in

ELSE ( DS 0 = ([n]t)->[n~t:DELAY([n]?t,1).
MAKE D: delay.

JOIN IF n = 1

THEN in

ELSE (in CONC delay,[. .n-l)

FI -> delay.

OUTPUT delay [n)

FI.

It should be noted that the macro has been written in the above form for efficiency and

hence only requires one delay per instantiation. With this macro the value of the type
't' is deduced from the instantiation of the macro. The macro returns the input value
unaltered if n=O and returns a delayed signal otherwise. When n > 0 an ELLA delay is

defined and instantiated, this delay has 'n' inputs and the JOIN statement joins 'in' to
the first delay input and each output of the delay to the successive input. The last delay
output being delivered as the result. The 'CONC' command is an ELLA command that
takes two arguments and concatenates them. In this macro it takes signals of type 't' and

'in-lit' and returns a signal of type '[n]t', which is then joined to 'delay'.

In certain cases the above delay macro can cause more unit delays to be created than
necessary, for example consider the expression



in@l + inC2 + in3

then using the above macro would give the ELLA statement

DEL{i}in + DEL{2}in + DEL{3}in

Whilst this expression .ould give the correct result it does use three separate delays. In
such situations an optinised delay macro could be used which takes the form

MAC O"DEL {INT n, TYPE t} = (t:in) -> [n-lt:

IF n=O THEN [1 in
ELSE ( FN DEL = ([nJt)->[njt: DELAY([r,?t,I).

MAKE DEL:del.

JOIN IF n=1

THEN in

ELSE (in CONC del[l..n-i])
FI -> del.

OUTPUT in CONC del

Fl.

then the above expression would become

MAKE DPDEL{3, .... : del.
JOIN in -> del.

del[2] + del[3) + del[4]

which would only use one delay. All the unit delays used in this section have been initialised
to represent an unknown but legal value. Initialisation of delays with other values N iil be
considered in section 11.1.

9 Coercion

Silage only operates on bitstrings and this often requires coercion in order for com-
patibility with the built-in Silage operators. An example of a constant, 0.8, written in

NUM< 7,6 > format which is then coerced to NUM< 12,4 > format is

NUM<12,4> ( 0.8 : NUM<7,6> )

In ELLA the same procedure can be achieved by

8



COER{12,4} ( NU1M{7,6) r-0.8")

where

MAC COER {INT mn nj' (( EXN INT wlIJ bit, STRING LINT nfl bit):ini)

-> (STRING Lmr-n3 bit, STRIrG [n] bit):

IF n1 -(rn-n)

THEN in[13Lrni+1-(rn-n)..rn13

ELSE STRING Er-n-rl~b'O CONC inl]
FI,
IF ni >= n

THEN in[21[l..n]

ELSE in[2) CONC STRING En-nllb'O

F1

-Note that ('OEk( and N\UM% have different input types and are therefore not in, ?rchariz-

An important di~fference between ELLA and Silage is that the coercionls necessaryN with
Silage are not needed in ELLA. This is due to the built-in operators of ELLA havinv
implicit type parameters (i.e. 'TYPE t' it, niacro OPDEL of the previous section Knd

hence they can operate on different leng-,h 5tringy. However the roundingz truncating rule-
would he different to Silage and thus for exact correspondence between ELL.P and Silage
(OER would be needed. For all other cases no such coer cion functions would be require(,

10 Functions

A function in Silage is composed of three parts namely

headinv ud,3clarations definitions

where the heading corresponds to an ELLA furction spec and definitions to thle ELLA
body. The declarations part corresponds to definitions of LET's. VAR's. MAKE's etc.
which in ELLA can occur anywhere within the function body. In Silaar there can he no
nested junctions and no recursion. ELLA allows nested functions 'Out has recursion only
through macros.

A typical Silage function declaration could be

FIJNC main ( in: NTMl2,4>) SUM<l2,4>

In ELLA this would be written as

ED MAIN = (num12-4: in) >nurn12-4:

An example of a complete Silage function is

9



FUNC main (in: NUM<12,4>) out: NUM<12,4> = I heading I

NUM <12,4>[6]: c; I
NUM <12.4>[71: sum; It declarations I

BEGIN
CEO] = . . l C [ .•

out * sum[O]; Ii definitions I
aum[6J * (0.0 : EUM<12,4>);

(k : 0.. 5) :: sumtk] = sum[k+1J

NUM<12,4>(c[k1 * inC0); I
END; I

Using the type 'nuni.124' defined in section 4 such a function can be written in ELLA
in several styles: all of which have the sane hardware representation as the Silage

FN MAIN = (num_12_4: in) -> num_12-4:

( SEQ
LET c -...

VAR sum : [73( ...

[INT k 1 .6sum[7-k) := sum[8-k3 - COER{12,4}(c[7-k: - DEL{6-k}:n);
OUTPUT sumr1J

where . are ELLA functions. It can he noted that an extension to ELLA will ail,,
iterations to have negative step lengths. thus the above iteration could then be writ ter, li
a fo. n syntacticall v closer to Silage. The function IAIN can also be written without tiht

use of sequences, but with recursive macros i.e.

FN MAIN = (num_12_4:in) -> num_12_4:
C LET c = . ....

MAC SUM {INT nI = (num_12.4:ip) -> num-2.-4:

IF n=1
THEN COER{12,4) (c[l] * DEL{O}ip)

ELSE SUM{n-1}ip + COER{12,4}(cn*DEL{n-l)ip)

FI.

OUTPUT SUM{6}in

To write the function without the use of recursive macros or sequences requires the deft-
nit ion of a new type of general macro as follows

MAC WIRE {INI m n} ((STRING [m-n) bit, STRING [n] bit):in)
-> (STRING Em-n) bit, STRING En] bit): in.

10



This then allows

FN MAIN - (num_12_4:in) -> num-12_4:
MAKE [6JWIRE{12,4}: c,

[7]WIRE{12,4}: sum.

JOIN ... -> c[13 ...............- > c[61.
JOIN zero -> sum[7].
FOR INT k 1.6 JOIN sum[k+l] + COER{12,4}(c[k] * DEL{k-1}in) - sum[k].
OUTPtM su= [1]

By using the macro 'WIRE' the format of ELLA resembles a Silage program with the
MAKE statements looking like Silage declarations.

Silage also has an "IF" construct which more easilY maps onto an ELLA "CASE"
statement. since an ELLA "IF" statement needs to know whether the boolean test is
true or false at compile assemble time in order that the correct hardware can be selected.
irrespective of what data passes through the circuit. Thus consider the following Silage
function

FUNC carry (in : NUM<12,4>) : B0L<> =
NUM<13,4> : sum;

BEGIN
sum = IF returnel -> (0: NUM<13,4>)

II suinhl + NUM<3,4(in)
FI;

return = sum NUM<13,4>(NUM<12,4>(sur,));

END

The 'IF' statement reads IF return a I delivers true THEN zero ELSE sum L I - in Fl,
In this example the output is not named and hence the default name 'return' is taken for
the output in the same way that ELLA uses the word OUTPUT to define the function
result. When converted into an ELLA description using sequences this example becone,

FN CARRY= (num-f2-4: in) -> bit:
( SEQ

PVAR sum ::- (STRING[9]b'O, STRING[4]b'O),
return ::- b'O;

sum :- CASE return OF
b'O : IUM{13,4}r"O.O"

ELSE sum + COER{13,4} in
ESAC;

return :- sum NEQ COER{13,4}(COER{12,4}sum);

11



OUTPUT return

Where "+" and "NEQ" could be user defined or taken from the library of functions and
built-in operators that are supplied with ELLA. Both 'sum' and 'return' are defined to
be persistent variables, that is they retain their value from one time step to the next.
There is an implicit delay associated with each variable and thus an explicit delay is not
required on either variable. This example can also be written using the 'WIRE' macro in
the following way

FN CARRY =(num-12..4:in) -> bit: # heading

(FN BOOL (bjt:in)->bit:in.
MAKE WIRE{13,4): sum, X declarations 0

BOOL: return.

JOIN1 CASE DEL{1~return OF

b10: NUM{13,43r"O.O"

ELSE DEL{11su + COER{13,4) in I # definitions

ESAC -sum.I

JOIN sum NEQ COER{13,4)(COER{12,4}sum) -> return. I

OUTPUT return

and the comparison with the Silag Ve7-von can he clearly seen. In general the function
BOOL' woidd he declared ext ernallv% in a predefined lihrarx.

Note that the constant 0.0 in the second artin of lte case clause could also have beetn
written as

b '0 (b"000000000", b"0000)

or
bhO (STRIVIS [9] b'O, STRINC [4] VO)

which would not have required use of the macro- "NIMNl.

11IMEC Silage

The IMF(' version of Silage has several differences fromi the Philips version. The (III

ferent parts will be considered and their translation to ELLA shown when such a route is
possible.

In th" IMF( version signal, can be declared in the body% of the function e.g

FUNC adap (sb :IUM(12,4>) c: NUM<12.,4> d IUM12,4



BEGIN

c = zCl + z62;
d a c - zC3;

z - a -b;

END;

Note that IMEC use the notation FIX< 12,4 > rather than NL'M< 12,4 > but for

consistency of notation in this document NUM will be used. Also this version of Silage
allows variables to be used before they are declared (i.e. z' in the above example). Re-
writing this function in ELLA would give

FN ADAP = (num-12-4: a b) -> [2]num-12_4:

BEGIN

MAKE WIRE{12,41: c, d, z.

JOIN DEL{llz + DEL{2}z -> c,
c - DEL{3}z -> d,

a - b -> z.
OUTPUT (c,d)

END.

where and '- are ELLA functions.

With the SPRITE extension of ELLA output names will be allowed, and hence 'c' and

'd" would not need tv be 'made'.

11.1 Initialisation of Delays

In this version of Silage Delays can be initialised by use of the " operat or. 1hu,
the statement

name CC num = constant

defines the value of name' at 'nun' time units before the start. A Silage program written

with such initialisation functions i,

FUNC f (in: Ntld<12,4>) : NUM<12,4>

BEGIN

state 461 0;

state *C2 W 1;

state i in * statool - stat*02;

retufrn state + stateel;

END;

13



Since 'state' is stored as an infinite vector the initialisation states that if the start time
is zero then at t = -1, state = 0 and at t = -2, state = 1. ELLA has no direct way of
imposing two conditions on a pure delay. The only way that ELLA can get round this is to
combine two delays in series, the first delay being initialsed to 1 and the second to 0 with
'state' being input to the second delay. Then 'statetl' will be the output of the second
delay and 'state@'2' will be the output of the first delay. Thus the translated version of
this function becomes

FN F - (nun-12_4:in) -> num.12_4:
( FE MULTDELAY = (num-12_4:in) -> [33nn-12-4:

C FN DELl (num_12-4) -> num_12_4: DELAY (b"OOOOOOOO,b"O'000"). 1).
FN DEL2 (num.12.4) -> numA2_4: DELAY( (b"OOOOOOO",b"O000"), 1).
MAKE DELl: dell,

DEL2: de12.
JOIN in -> dell,

dell -> del2.

OUTPUT (in, dell, del2)

MAKE MULTDELAY: state.
JOIN ((in + state[21) - state[33) -> state.

OUTPUT state [1] * state[2]

For more complicated initialisations the function 'MIULTDELAY' will become progres-
sively more complex. In an automatic trar,slation two passes of a Silage program would be
needed in order to define 'MULTDELAY' since the number and position of all initialisatioi
values would be required before the function could be constructed.

NOTE : With the inclusion of CONSTant macro parameters in the ELLA language it

is possible to write

MAC MULTDELAY {CONST ([INT n]TYPE t): c} = (t:in) -) [n+1t:
IF n = 0

THEN in
ELSE C FS DEL - ([n~t)->[n~t: DELY(c,).

MAKE DEL:del.
JOIN (in CONC del[l..n-1]) -> del.
OUTPUT in COIC del

FI.

F1 F a (num.12_4:in) -> num_12.4:
( CONST cl - (STRING[8]b'O, STRIG[4b'O),

c2 = (b"O0000001", STRING[4]b'O).
MAKE MULTDELAY{ (cl,c2) }: state.

14



JOIN (in + state[2J) - statoe[3 -> state.

OUTPUT state[l] + stattO2)

The macro MULTDELAY can be compared with the macro OPDEL defined in section 8
for the case when the delay initialisation is set to 'unknown'.

it can also be noted that an alternative form for an initialised delay may be used if all

occurrences of the delay can be written within an ELLA sequence clause i.e

PVAR history ::= (cl, c2, c3, c4, ?type);

[INT i - 2 ..S history[7-iJ := history[6-i];

history[I] := in;

where cl.c2.c3.c4 are the initialisation constants.

These last two forms can be used in such cases where. say, the first 100 values require

initialisation, however the notation is far from concise.

11.2 While Loops

This allows for data dependent termination of a loop i.e.

a = 0; sum = 0;
WHILE (in>O) DO

BEGIN

a = a + 1;
sum = sum + in;

END

It can be noted that this facility is not available on the system which is used as input

to a silicon compiler. If this 'While loop' is considered to be a loop in time then the

corresponding ELLA can be written as

PVAR a ::- zero, sum ::- zero;

CASE TEST(in) OF
b'O (a :- a + one;

sum :- sum + in

b'1i

ESAC;

15



where TEST delivers b'O whilst "in > 0'" but when the test fails delivers b'! for that time
and all subsequent time. Writing such a loop in un-sequenced ELLA gives

MAKE [2]WIRE{ ... 1: asum.
LET c - (one, in).

FOR INT i - 1 .. 2 JOIN CASE TEST(in) OF

b'O DEL{1} a-sumi] - c[i],
b'1 DEL{1} asumEi]

ESAC -> a-suzWi.

where 'a-sum' is a vector whose first element corresponds with 'a' and second element with
,SUn'.

Silage also uses 'WN'hile loops' as an open ended iteration loop, for example

sum, a NUM<j2,4>[max];

WHILE ( i < in ) DO
BEGIN

sum i] = sumni-i] + aliJ;

i=i 1;
END;

In ELLA this would need to be handled by the following approach for sequences

INT lwb = .. , upb = .. , max=

TYPE integer = int/(lwb..upb).

VAR sum := [max]( ... ), a := [max]( ...

[INT i - 2. .rax]
CASE it/i LT in OF

b'l : sum[i: sum[i-1] - a[i]

ESAC;

and by the following for non-sequence ELLA

INT lwb - .. . upb .. ,max=

TYPE integer • int/(lwb..upb).

16



MAKE [max] WIRE {12,4} : sum, a.

FOR INT i = 2 .. max

JOIN CASE it/i LT in OF

b'1l : sum[i-l] + a[i]

ELSE sum[i]

ESAC -> sum[i].

There is no construct in ELLA which allows for infinite loops. In ELLA the user must

define bounded loops which terminate with a choosen value 'max'. This approach should
be used with caution since 'max - 1' instantiations of'LT' and '+' will be made irrespective
of the size of 'in'.

The functions 'LT* and '+' are built-in operators that compare ELLA integers and add

two bit strings, repectively. The CASE clause is used to decide whether to update 'sum'

or not.

11.3 Interpolate, Decimate, Cut and Switch

These procedures allow functions to be partitioned into different processes with pos-

sibly different sample rates. Three different approaches can be used. First Interpolate.

this takes N signals at a sample rate U ,say, and puts them together to form a single sig-

nal with a sample rate of U*N, decimate reverses this process. The final approach "cut"

leaves the signals alone but divides up the program onto different processes which will run

concurrently.

The 'switch' feature provides a practical shorthand for combining interpolate and dec-

imate, for example

temp = interpolate (a,b,c);

(x,y) = decimate (temp);

can be re-written as

(x,y) = switch (a,b,c)

such a construct being of use in the description of a transmultiplexer filter. Thus if (,ab,
is a tuple signal sampled every 6 units, say, then 'temp' will be a signal with a sample rate

of 2 units, which has values 'a' for units 1 & 2, 'b' for units 3 & 4, and 'c' for units 5 & 6.

If (x,y) is sampled every 4 units then the first set of values of (x,y) will be (a,b), followed

by (c,a) 4 units later and (b,c) 4 units after that. In general 'switch' has N inputs and M

outputs.

The enhanced ELLA timing model described in 19] will allow transformation of inter-

polate and decimate onto ELLA macro functions of the form
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MAC INTERPOLATE - ([INT n]vord:input) -> word:
( SEQ

TYPE intcount = NEW ic/(,.n);

FN INC = (intcount:in) -> intcount:

ARITH IF in * n THEN 1 ELSE in+1 FI;

PVAR count ::- ic/1;
LET out = input[Ecount]];
count := INC count;
OUTPUT out

MAC DECIMATE {INT n} - (word:newvalue) - [n~word:
( SEQ

TYPE intcount = NEW ic/(l..n);
FN INC = (intcount:in) -> intcount:

ARITH IF in = n THEN I ELSE in 1 FI;
PVAR count ::= ic/1;

PVAR out ::= [n)zeroword;
LET pastout = out;
out[[count]] := newvalue;
count := INC cnu,_t;
OUTPUT pastout

and the use of the new ELLA timing primitives of SAMPLE. FASTER. SLOWER (see
[9,) will then be used to simulate regions of different speed. However due to the different
approaches of modelling time ELLA circuits will need to be operated at the outermost
level with equal input/output sample rates.

11.4 Other Differences

Expressions in Silage can have multiple assignments such as

(a,b,c) = (xy,z)

ELLA V4 does not have any multiple lets or assignments, however extensions to ELLA

have been carried out for SPRITE to allow these features and consequently they will be
available in the SPRITE extension of ELLA.

Silage has a library of operators which can be used by programs, however the arguments
supplied to such operators require arguments of the same type, thus resulting in the ne-
cessity for coercion operators. ELLA also comes with a library ofpredefined functions and

built-in operators which provides a wide range of operators for all ELLA types, including
bit strings, and can be used directly or modified by users to suit their own personal re-
quirements. This library provides more flexibility than operators in Silage since arguments
of bit strings with different lengths can be supplied. The advantage of this is that ELLA
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programs do not need to have coercion functions in order for the operators, functions to

be used.

Silage also carries out optiruisations on circuits when compiling, fur example consider

state = in + stateel - stateQ2;
return = state 4 stateCl;

The two instances of delay @1 would not be made since statetl = state at t-1 and state

is stored as a vector in time. Thus "CV is a pointer to a value in the vector rather than
being the actual value. This means that for large array structures duplication of store is

avoided. With ELLA the case is slightly different, for example

state in + DEL{llstate - DEL{2}state;
return state 4 DEL{lstate;

would create two instances of DEL{1}. however when these expressions were being assem-
bled the macro optiniisation built into ELLA would ensure that oldy one instance of code

would be produced.

PragmaE are also used in Silage programs, these are commands which instruct the host
machine to perform some action, for example split the problem between processors or de-

fine a space in local memory. ELLA ha, the possibility of using attribute data for such

tasks.

Silage also has generic functions which are similar to ELLA macros which have INTeger
parameters. Silage generic function specifications are of the form

FUNC add (a,b : NUM<'in, wd>): NUM<win, vd> =

where 'win' and 'wd" are user defined integers. Thus suppose this function is in a file
'add.sil'. then to create two instantiations with different parameter values requires the

following

$define add add12

$define win 12

Sdefine ad 4

$include "add.sil"

$define add add18

#define win 18

$dofine wd 6

*include "add.sil"
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The Silage generic function specification is analogous to the following ELLA macro speci-
fication

MAC ADD {INT win wd} - ((STRING [win-wd]bit, STRING [wdlbit):a b)
-> (STRING [win-wdjbit, STRING [wd]bit):

where 'win' and 'wd' are integer parameters supplied when the macro is instantiated. Thus
to obtain two explicit instantiations of the macro within an ELLA description, analogous
to the two Silage functions given above, requires the following statements

MAKE ADD{12,4}: add-12,
ADD{18,6}: add_.18.

It can be noted that ELLA macros can also be instantiated implicitly within an ELLA
description.

12 Conclusions

This document considered translation of Silage circuits into functionally equivalenv
ELLA circuits. A series of ELLA macros which could form a library of translator func-
tions has been outlined. In general there is a mapping from Silage onto ELLA. However
translation of unbounded while loops would need inordinate amounts of hardware if tranr
lation was restricted to the space domain.

Future extensions to ELLA. which are being carried out under the ESPRIT project
SPRITE. will assist designers by allowing them to write ELLA circuits in a Silage like
notation, and hence translation will also become easier. In particular extensions to th,
ELLA timing model allows interpolate and decimate functions, and extensions to the lan
guage allows multiple lets and makes, partial joins and named outputs.

Due to the different approaches of ELLA and Silage there is no simple translation
of all ELLA programs into Silage. Lr a route from ELLA to Silage was required then
either a subset of ELLA specifically chosen for its mapping onto Silage, or an expansion of
the Silage language would be needed. However ELLA possess a series of transformation,
for converting high level ELLA constructs into lower level constructs. It is possible that
these plus future transformations could transform ELLA circuits into a form suitable for
translation into Silage. Being able to transform ELLA has important implications for the
synthesis of circuits. It has already been demonstrated [8. that two circuits can be proved
mathematically equivalent if written in a very primitive form of ELLA.
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